Signalling pathways involved in the detection of peptones by murine small intestinal enteroendocrine L-cells
نویسندگان
چکیده
Glucagon like peptide-1 is an insulinotropic hormone released from intestinal L-cells in response to food ingestion. Here, we investigated mechanisms underlying the sensing of peptones by primary small intestinal L-cells. Meat, casein and vegetable-derived peptones (5 mg/ml), the L-amino acids Phe, Trp, Gln and Ala (20 mM each), and the dipeptide glycine-sarcosine (20 mM) stimulated GLP-1 secretion from primary cultures prepared from the small intestine. Further mechanistic studies were performed with meat peptone, and revealed the elevation of intracellular calcium in L-cells. Inhibition of the calcium sensing receptor (CaSR), transient receptor potential (TRP) channels and Q-type voltage gated calcium channels (VGCC) significantly attenuated peptone-stimulated GLP-1 release and reduced intracellular Ca(2+) responses. CaSR inhibition also attenuated the GLP-1 secretory response to Gln. Targeting these pathways in L-cells could be used to increase endogenous production of GLP-1 and offer exploitable avenues for the development of therapeutics to treat diabetes and obesity.
منابع مشابه
Mixed Primary Cultures of Murine Small Intestine Intended for the Study of Gut Hormone Secretion and Live Cell Imaging of Enteroendocrine Cells
The gut is the largest endocrine organ of the body, with hormone-secreting enteroendocrine cells located along the length of the gastrointestinal epithelium. Despite their physiological importance, enteroendocrine cells represent only a small fraction of the epithelial cell population and in the past, their characterization has presented a considerable challenge resulting in a reliance on cell ...
متن کاملGPR93 Activation by Protein Hydrolysate Induces CCK Transcription and Secretion in STC-1 Cells By
In the intestinal lumen, protein hydrolysate increases the transcription and release of cholecystokinin (CCK) from enteroendocrine cells of the duodenal-jejunal mucosa. Our recent discovery that a G protein coupled receptor (GPCR), GPR93, is activated by dietary protein hydrolysate causing induced intracellular calcium mediated signaling events in intestinal epithelial cells, raises a possibili...
متن کاملGPR93 activation by protein hydrolysate induces CCK transcription and secretion in STC-1 cells.
In the intestinal lumen, protein hydrolysate increases the transcription and release of cholecystokinin (CCK) from enteroendocrine cells of the duodenal-jejunal mucosa. Our recent discovery that a G protein-coupled receptor, GPR93, is activated by dietary protein hydrolysate causing induced intracellular calcium-mediated signaling events in intestinal epithelial cells raises a possibility that ...
متن کاملChemosensory signalling pathways involved in sensing of amino acids by the ghrelin cell
Taste receptors on enteroendocrine cells sense nutrients and transmit signals that control gut hormone release. This study aimed to investigate the amino acid (AA) sensing mechanisms of the ghrelin cell in a gastric ghrelinoma cell line, tissue segments and mice. Peptone and specific classes of amino acids stimulate ghrelin secretion in the ghrelinoma cell line. Sensing of L-Phe occurs via the ...
متن کاملGut bitter taste receptor signalling induces ABCB1 through a mechanism involving CCK.
T2Rs (bitter taste-sensing type 2 receptors) are expressed in the oral cavity to prevent ingestion of dietary toxins through taste avoidance. They are also expressed in other cell types, including gut enteroendocrine cells, where their physiological role is enigmatic. Previously, we proposed that T2R-dependent CCK (cholecystokinin) secretion from enteroendocrine cells limits absorption of dieta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Peptides
دوره 77 شماره
صفحات -
تاریخ انتشار 2016